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Advancing To Multi-Scale SSIM 
 
 

Since it was first created at the University of Texas in 2002, the Structural SIMilarity (SSIM) image 
assessment algorithm has become a valuable tool for still image and video processing analysis. SSIM 
provided a big advance over MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ratio) 
techniques because it much more closely aligned with the results that would have been obtained with 
subjective testing. Today, an even better version of SSIM has been developed, which is called Multi-
Scale SSIM, or MS-SSIM. For objective image analysis, this new method represents as significant an 
advancement over SSIM as the advancement that SSIM provided over PSNR.  

 
Subjective and Objective Testing 

Subjective testing is the gold standard of video analysis, because it uses human volunteers to 
compare video test sequences that have been processed, such as video that has gone through 
compression or has experienced distortion or loss during transmission. Because it uses actual human 
volunteers, subjective testing is considered to be a very accurate model of the human visual system. 

Unfortunately, subjective testing is very expensive and difficult to do correctly. Since each person 
can have a different perception of image quality, multiple volunteers must be used to ensure that the 
test results are statistically significant. A considerable amount of time can be consumed in gathering 
the required number of test subjects and actually performing the test. For the test results to be valid, 
the viewing conditions must be stringently controlled to eliminate possible biases that could be 
introduced by incorrect viewing angle and distance, improper lighting, or other factors that could 
interfere with the reliability or repeatability of the tests. 

Objective testing uses mathematical techniques to analyze images in order to simulate the results 
of subjective testing. Algorithms have been developed to analyze images (or image sequences) that 
can be done standalone or by comparison with a known reference image (or sequence). Objective 
testing is highly repeatable, in that the algorithms will always produce the same result when presented 
with the same set of input images. As compared to subjective testing, objective algorithms can be run 
extremely fast and without human intervention. With the right hardware, depending on the complexity 
of the algorithm being used, objective results can be obtained in real time while a video is playing. 
These factors combine to reduce the costs of objective testing to a small fraction of the costs of 
subjective testing, making it the best choice for repetitive and in-service testing. 

When image quality measurement results are reported, it is common to use either the Mean 
Opinion Score (MOS) scale or the Difference (or Differential) Mean Opinion Score (DMOS) scale. The 
MOS scale is based on the way that viewers grade images, ranging from “Unacceptable” 
(unwatchable) to “Excellent” (perfect). DMOS compares two images that have been evaluated using 
the MOS scales. When one of the two images in the comparison is a high-quality original, and the 
other has been degraded in some manner, the amount of difference between the MOS scores of the 
two images gives a DMOS score that indicates how severely the image has been degraded. 

 
Structural SIMilarity (SSIM) 

SSIM was developed to more accurately model the way that humans perceive image quality than 
the mathematical models used previously. MSE and PSNR weight every change in pixel values 
equally, whether or not the change would be noticeable to a human observer. This equal weighting 
could, for example, cause a high difference score to be attributed to a pair of images where the 
brightness or contrast was changed, even though such changes are not particularly important to 
human observers. SSIM would be more likely to score the image pair similarly, because the structure 
of the two images would closely match. 
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SSIM compares three major aspects of a pair of images to derive a measurement of how different 
they would appear to a human observer:  

- Change in Luminance, which compares the brightness of the two images. The human visual 
system is not particularly sensitive to the absolute level of brightness of an image, but is 
sensitive to differences in brightness between two images.  

- Change in Contrast, which looks for differences in the range between the brightest and darkest 
extent of the two images. As in the case of luminance, the human visual system is not 
particularly sensitive to the absolute amount of contrast difference in an image. 

- Correlation, which compares the fundamental structure (represented by the local luminance 
patterns) of the two images to determine if they are similar or different, as they would appear to 
human observers. The parameter that is actually measured to determine correlation is called 
the “covariance” of the two images. If both images are closely matched, then the covariance 
will be high; in areas where the two images are different the covariance will decrease. (Note 
that this step is performed after the average luminance of the images has been equalized and 
the overall contrast of the two images has been normalized.) 

The SSIM process begins with the two images that are to be compared being scaled to the same 
size and resolution, to allow for a pixel-by-pixel comparison. Then, a fixed size window is selected 
within the images where the mathematical comparisons take place. Measurements for each of the 
three aspects described above are then combined into an overall score that represents the quality 
level of the image. After each comparison, the window is moved to another portion of the image and 
then repeated. Scores for each window location are accumulated and averaged to yield an image 
difference value (expressed as a DMOS) for the overall image. 

Figure 1 illustrates the advantages of SSIM over MSE image evaluation. The image (from the University of 
Texas LIVE image database) was distorted in five different ways to achieve similar MSE scores, but with 
radically different MS-SSIM. In figure 1, (b) has increased contrast, (c) has been blurred, (d) has Gaussian noise 
added, (e) shows JPEG compression, and (f) has salt and pepper noise added. In each case, the MS-SSIM score 
shows a significantly better ability to track and match with perceived image quality than MSE. (Note: it may be 
easier to view the distortions by zooming in on the images.) 

   (a) Original     (b) MSE = 74.57  
         MS-SSIM = 0.9956 

   (d) MSE = 74.57 
         MS-SSIM = 0.9592 

   (e) MSE = 77.90 
        MS-SSIM = 0.6609 

Figure 1  

   (c) MSE = 75.35  
        MS-SSIM = 0.6609 

   (f) MSE = 75.64 
        MS-SSIM = 0.4145 
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Multi-Scale SSIM (MS-SSIM) 
Using SSIM as a basis, MS-SSIM extends the technique by making multiple SSIM image 

evaluations at different image scales. This is accomplished by repeatedly performing the image 
analysis in multiple iterations, with each successive image pair that is downsampled by a factor of two 
from the previous iteration. One concept that drove the development of MS-SSIM was the observation 
that the performance of SSIM was dependent on the scale of the images, including changes in image 
viewing distance. With MS-SSIM, the scale of the images becomes less important, to the point where 
images that have been upconverted or downconverted (say from High Definition to Standard 
Definition) can still be objectively compared. 

The MS-SSIM process begins with the same procedure as SSIM, in that the two images that are 
being compared are scaled to the same size and resolution, normalized for luminance and contrast, 
and then analyzed using a sliding window. The images are compared using the same criteria as 
SSIM: change in luminance, change in contrast, and correlation (or structure). Scores for each 
comparison are accumulated, and then the images are downsampled, and the comparisons are 
repeated. This process continues for a fixed number of iterations; for most implementations, between 
three and five iterations are used. 

Because there are comparison results from each of the various image scales, the results must then 
be combined into an overall score for the image.  Since human perception of the impact of distortions 
varies with image scale, different weightings are given to the results at each image scale.  These 
weights were derived from experiments using multiple image sets and human observers that were told 
to identify images that had the same amount of perceived distortion at each scale. One interesting 
result of this analysis was that the luminance comparison only needs to be done at the smallest scale 
(most highly downsampled) whereas the contrast and structure comparisons are accumulated at each 
image scale. 

To justify the extra workload that MS-SSIM places on an analysis system, the results must be 
better. This is indeed the case, as has been shown in several studies which are detailed in the 
following section. It is interesting to note that the improvement of MS-SSIM relative to SSIM is similar 
to the improvement that SSIM achieved relative to PSNR. With the processing power that is available 
today in measurement equipment, the incremental cost of using MS-SSIM is low relative to the value 
of the increased accuracy that can be achieved by using the algorithm. 

 
MS-SSIM vs. SSIM by the Numbers 

Several large scale tests have been done to assess the ability of both SSIM and MS-SSIM to 
provide objective scores that most closely approximate the subjective scores for a collection of image 
pairs. The closer the match, the better the objective algorithm is for simulating how human viewers 
would evaluate the same images. 

This testing begins with a set of high-quality images. These images are processed to add various 
types of distortion, and a pool of test images is created. Volunteers then perform subjective testing of 
the images in the pool to create one set of results. A second set of results is created by using an 
objective test to also score all of the images in the pool, both pristine and degraded. These two sets of 
results are then compared. If these two sets of results are mathematically correlated, it means that the 
objective measurement method is a good predictor of how a human viewer would rate the image. 
Higher levels of correlation or lower residuals (the amount of variance that remains after the 
correlations are removed) indicate better performance by the objective model.  

This testing process is repeated for each of the objective tests being evaluated. (In reality, the 
subjective testing is done once and this same set of results is used for each comparison). So, for 
example, if the goal was to compare the performance of the SSIM algorithm to the MS-SSIM, then the 
evaluation process would be done twice: first the SSIM results would be compared to the subjective 
testing results, and then the MS-SSIM results would be compared to the same subjective results. The 
results of these two comparisons could then be examined to determine which algorithm more closely 
correlated with the subjective (human) results. This was exactly the process used in three major sets 
of results that looked at various forms of objective testing. 
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The first set of results was published in a paper entitled “Multi-Scale Structural Similarity for Image 
Quality Assessment” by Z. Wang, E. Simoncelli and A. Bovik; an invited paper for the 37th IEEE 
Asilomar Conference on Signals, Systems and Computers, held in Pacific Grove, CA, on November 9-
12, 2003. In this paper, MS-SSIM was compared to the PSNR and the SSIM algorithms by comparing 
each of them to the results that were obtained from subjective testing of 344 images with MOS data 
obtained by averaging 13 to 25 subjective scores that were given by human observers.  

 

Model 
Non-linear regression 
correlation coefficient 

Spearman rank-order 
correlation coefficient 

Mean ab-
solute error 

Root mean 
squared error 

Outlier 
ratio (%) 

PSNR 0.905 0.901 6.53 8.45 15.7 
SSIM (M=2) 0.963 0.959 4.21 5.38 2.62 
MS-SSIM 0.969 0.966 3.86 4.91 1.16 

 
Five results are given for each of the algorithms being evaluated in the preceding table. The first 

two results show the correlation of the algorithm with the subjective results, with a higher value being 
a better score. The remaining three results show the amount of the variation in the subjective data that 
was not explained (the “error”) by the objective algorithm.  One each of the five criteria, MS-SSIM was 
the best performer. 

Note that in the preceding table that the SSIM result is annotated with an “M=2.” In this particular 
test, the SSIM algorithm was run on the original images as well as on images that had been scaled 
down from the original. Five sets of SSIM results were calculated, with M indicating the downscaling 
counter for the image, where a value of M=1 indicates that no downscaling was used, and a value of 
M=5 indicating that the image had been downscaled four times. The result table shows the results for 
M=2 because this was the best result obtained out of the five different scales used for SSIM. 

The second set of results, which is available on-line at http://www.ponomarenko.info/tid2008.htm, 
compares eighteen different objective testing methodologies. This test used possibly the largest set of 
results for subjective image evaluation ever compiled, with total of 838 human observers performing 
512856 evaluations of relative visual quality in image pairs. A total of 25 reference and 1700 distorted 
images were used in the test. 

Each of the eighteen objective testing methods was evaluated in comparison to this large database 
of subjective results. Two different types of correlation analysis were used to do this comparison: 
Spearman and Kendall. Objective results that more highly correlated with the subjective results (i.e. 
more closely modeled human observations) were ranked higher in the following tables. Out of the 
eighteen objective models that were evaluated, MS-SSIM ranked highest for both correlation tests. 

 
Rank Measure Spearman correlation Rank Measure Kendall correlation 

1 MS-SSIM 0.853 1 MS-SSIM 0.654 
2 SSIM 0.808 2 SSIM 0.605 
3 VIF 0.75 3 VIF 0.586 
4 VSNR 0.705 4 VSNR 0.534 
5 VIFP 0.655 5 VIFP 0.495 
6 NQM 0.624 6 PSNR-HVS 0.476 
7 UQI 0.6 7 NQM 0.461 
8 PSNR-HVS 0.594 8 PSNR-HVS-M 0.449 
9 XYZ 0.577 9 UQI 0.435 
10 IFC 0.569 10 XYZ 0.434 
11 PSNR-HVS-M 0.559 11 IFC 0.426 
12 PSNRY 0.553 12 PSNRY 0.402 
13 PSNR 0.525 13 WSNR 0.393 
14 MSE 0.525 14 LINLAB 0.381 
15 SNR 0.523 15 SNR 0.374 
16 WSNR 0.488 16 DCTUNE 0.372 
17 LINLAB 0.487 17 PSNR 0.369 
18 DCTUNE 0.476 18 MSE 0.369 
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The third set of results comes from a paper entitled “Study of Subjective and Objective Quality 
Assessment of Video” by K. Seshadrinathan et al., which was published in June 2010 in IEEE 
Transactions on Signal Processing. In this paper, four sets of degraded video sequences were used; 
one set each that simulated the degradations caused by wireless network data loss, IP network 
packet loss, H.264 compression, and MPEG-2 compression. A summary combining all the data from 
the four image sets was also produced.  

The results in this paper show that MS-SSIM performed better than both PSNR and SSIM, as 
summarized in the following four tables.  The first two tables show two different measures of 
correlation, with higher scores meaning higher correlation. A higher correlation indicates that the 
objective algorithm more closely matches the subjective tests done with human observers, and hence 
indicates the algorithm’s greater ability to mimic human scoring. The third and fourth tables show the 
variance of the residuals, with lower scores being better. Overall, the data in these four tables shows a 
substantial, significant improvement in the ability for MS-SSIM to objectively score images more 
closely to human observers. 

 
Spearman Rank Order Correlation Coefficient 
 

Algorithm  Wireless IP H.264 MPEG-2 All Data 
PSNR 0.4334 0.3206 0.4296 0.3588 0.3684 
SSIM 0.5233 0.455 0.6514 0.5545 0.5257 
MS-SSIM 0.7285 0.6534 0.7051 0.6617 0.7361 

 
Linear Correlation Coefficient 
 

Algorithm  Wireless IP H.264 MPEG-2 All Data 
PSNR 0.4675 0.4108 0.4385 0.3856 0.4035 
SSIM 0.5401 0.5119 0.6656 0.5491 0.5444 
MS-SSIM 0.717 0.7219 0.6919 0.6604 0.7441 

 
Variance of the residuals between individual subjective scores and VQA algorithm prediction 
 

Algorithm  Wireless IP H.264 MPEG-2 All Data 
PSNR 189.77 171.83 193.18 179.04 201.07 
SSIM 180.59 164.33 166.02 165.83 184.99 
MS-SSIM 156.77 140.78 159.37 152.21 153.97 

 
Variance of the residuals between VQA algorithm predictions and DMOS values 
 

Algorithm  Wireless IP H.264 MPEG-2 All Data 
PSNR 86.87 75.66 97.84 81.78 101.55 
SSIM 77.46 67.91 69.98 68.24 85.36 
MS-SSIM 53.07 43.58 63.15 54.3 54.15 

 
To understand why MS-SSIM is better than SSIM, it’s helpful to consider what is being modeled – 

the human visual system (HVS). The HVS is particularly adept at recognizing objects in their natural 
environment at multiple scales, that’s why we can easily recognize faces of people we know whether 
they are five feet or fifty feet away from us. Distortions that are introduced by modern compression 
and video transport systems are also often multi-scale, so they also can be better evaluated using 
MS-SSIM. Even more important, SSIM breaks down if the video resolution is changed i.e. scaled 
down or up, or if the viewing distance to the images is changed. The performance of MS-SSIM does 
not have these same limitations.1

  
  

                                                 
1 Regarding scaled images/videos, or images/videos viewed at different distances, there has not yet been a large scale 
human study done, it is based on observations that MS-SSIM does not break down by many authors. 
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Conclusion 
While there is no disputing the ultimate superiority of subjective testing for evaluating images and 

signals, such testing can be hard to do correctly, is very expensive, and is quite time consuming. 
Accordingly, if a suitable objective testing algorithm can be developed to closely match the results that 
would be obtained with subjective testing, then the objective algorithm can be used to simplify and 
automate video image comparison. An added benefit of objective testing is repeatability, because an 
algorithm will always return the same results for a given image pair. This enables many forms of 
testing that are difficult or expensive to do with subjective testing, such as fine-tuning the configuration 
of a video compression encoder and decoder pair. Repeatability also allows test equipment located at 
different points within a distribution network to create results that can be compared and analyzed to 
compare the quality of various technologies and delivery network providers.  

As the results presented in this paper clearly indicate, MS-SSIM represents a significant 
improvement over SSIM, making it one of the most accurate objective image measurement 
techniques in use today. Based on the research summarized in this paper, any user who requires 
critical image quality measurements should chose the more representative and accurate MS-SSIM for 
testing in place of the good, but superseded SSIM. MS-SSIM on the DMOS scale is featured in Video 
Clarity’s ClearView product line, which offers a comprehensive set of tools for measuring audio and 
video quality. 
 


