Real-Time Monitor (RTM) System Guide
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 REAL TIME MONITORING (RTM) SYSTEM</td>
<td>3</td>
</tr>
<tr>
<td>2 HARDWARE QUICK SETUP GUIDE</td>
<td>4</td>
</tr>
<tr>
<td>3 SOFTWARE QUICK SETUP GUIDE</td>
<td>6</td>
</tr>
<tr>
<td>4 TYPICAL APPLICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>5 SETTING RTM PARAMETERS</td>
<td>11</td>
</tr>
<tr>
<td>6 SETTING NORMAL CONFIGURATION PARAMETERS</td>
<td>14</td>
</tr>
<tr>
<td>7 LOG FILES</td>
<td>27</td>
</tr>
<tr>
<td>8 RTM LOG GRAPHER</td>
<td>30</td>
</tr>
<tr>
<td>9 COMMAND-LINE INTERFACE</td>
<td>31</td>
</tr>
</tbody>
</table>

1 REAL TIME MONITORING (RTM) SYSTEM

4.1 LONG DURATION TESTING

4.2 BROADCAST MONITORING

4.2.1 Reference Content Caused the Error

4.2.2 Processing Content Caused the Error

5 SETTING RTM PARAMETERS

5.1 RTM STATUS

5.2 RTM CONTROLS

5.3 RTM ALIGNMENT

5.4 RTM VIDEO QUALITY

5.5 RTM AUDIO QUALITY

6 SETTING NORMAL CONFIGURATION PARAMETERS

6.1 INPUTS PANE

6.2 IP/COMPRESSED CONFIGURATION PANE

6.3 ALIGNMENT PANE

6.4 DYNAMIC REALIGNMENT PANE

6.5 VIDEO METRIC PANE

6.6 AUDIO METRIC PANE

6.7 VANC METRIC PANE

6.8 SEQUENCE CREATION PANE

6.9 LOGS AND ALERTS PANE

7 LOG FILES

7.1 AUDIOL align.log

7.2 AudioAvg.log

7.3 Rtmlog.log

7.4 PsnrAvg.log / DMOSAVG.log

7.5 Psnr / .DMOS and .Audio files

8 RTM LOG GRAPHER

8.1 THE APPLICATION

8.2 INTERACTION WITH THE GUI

9 COMMAND-LINE INTERFACE

9.1 Rtmserver.exe

9.2 Rtm.exe

9.3 COMMANDS DETAILED
1 Real Time Monitoring (RTM) System

At the processing layer, problems arise when down-converting HD to SD, changing formats, and compressing the signal into the available bandwidth. Also the separate processing of audio, video, and data can lead to synchronization problems.

At the transmitting layer, broadcasters encounter their familiar RF problems with a new challenge - coverage and interference problems caused by more channels at lower powers. Broadcasters rely on telecommunication technology so latency, packet loss, and synchronization add additional concerns.

Errors in one layer can cause errors in the next. For example blockiness caused by compression looks similar to packet loss/bit errors.

For this reason, the quality must be monitored at multiple points across the network including at the end users device (set-top box, mobile).

RTM - a full reference broadcast quality monitor:
- Measures the audio and video quality
- Measures the audio and video delay (lip-sync)
- Measures the audio program loudness of both source (1) and test (2) input
- Measures the VANC data lines integrity
- Alarms and records the A/V sequences if any of the above have fallen below the degradation threshold as set by the user

The degradation threshold is pre-configured by your engineering team and set to detect:
- Fine detail - blur, blockiness, and
- Gross impairment - loss of signal, picture freezes, lip-sync.

RTM can compare any combination of
- SDI input
- IP input
- File input

Applications
- In-service broadcast monitoring
- Long duration QA testing for networks or devices
- Television Production Truck to Central Office lip-sync and quality pre-check

RTM includes reference test patterns, which can be exported as QuickTime, RAW, or AVI files or played through SDI outputs. These can be stored in your Production Truck to check lip-sync and A/V quality or can be used for QA testing.

Being a full-reference monitoring device, RTM is not influenced by the "artistic" quality of the source.

RTM continually aligns to measure lip-sync and it reports any frame loss.
2 Hardware Quick Setup Guide

Figure 1: RTM-1RU Back Panel
Models: RTM-S1081
RTM-S1082
RTM-S1083

Figure 2: RTM-1RU Front Controls

Figure 3: RTM-3G Back Panel
Models: RTM-S3082
RTM-S3083

Figure 4: RTM 3G Portable Back Panel
Model: RTM-S2043

This unit has its HDSDI connector labels 1,2,3,4. Inputs are connections 1 and 2. Outputs are connections 3 and 4.
Figure 5: RTM-2RU Back Panel (supplied with 5 SMB to BNC conversion cables - 13cm (7”))
Model: RTM-S2042

To operate RTM (regardless of model):
- Connect the included USB Keyboard and Mouse
- Connect a HDMI, DVI or VGA monitor to the system graphics output connector
- Connect signals to Input 1 and Input 2 (For file-based operation, this is not necessary)
- The Output connectors are an echo output of the input (except when using the separate RTM Player application).

The hardware specifications of each system above is detailed in the RTM datasheets or on the Video Clarity website here.
3 Software Quick Setup Guide

Figure 4: RTM Running

After launching the RTM application if it not set for automatic start, then all you have to do is press the Start button in the Control pane.

Pressing Start will include a full alignment, which independently aligns the audio and video streams. Upon completion, the alignment pane is updated:
- The video offset is noted in frames
- The audio alignment with respect to the video offset is noted in samples, frames, and time (milliseconds/ms)
- The video spatial alignment in pixels is noted.

For the example above, the audio offset is -17.7ms, which means that the audio is ahead of the video by ½ a frame.

The video, audio, and VANC are compared against a threshold/duration, and if they exceed the designated limits:
- a recording is started of both incoming signals,
- a log entry is made,
- the status in the Status pane is updated,
- an audio alert is generated,
- the status on the 1RU’s front panel is updated, and
- a log file (.psnr or .audio) is created which contains the difference values for the created recordings. This log file can be dragged/dropped onto ClearView for easy setup and post-analysis.

It is expected that the incoming signals will drift from each other over time. For example, the delay between the signals may be 344 frames for a day, 343, for a day, and back to 344 the next. This is due to several factors including:
- the sources not being genlocked
- the sources changing between national and local feeds

RTM is aware of this and compensates for it using dynamic re-alignment.

The remainder of the screen is devoted to showing the quality over time. The 2 videos are shown side-by-side after alignment. This is a decimated image and does not necessarily show the entirety of the video quality. The min/max amplitude of the audio is shown as a meter per channel up to 8 channels.

Several graphs are depicted:
- A Volume activity meter is provided for each audio channel per input
- An LKFS meter is provided reporting Loudness in real-time
- To the right of this metering A/V offset is reported in samples (window), frames and ms
- Video graph is showing the PSNR score over time
- Audio graph is showing the frequency/amplitude of each channel score over time.

RTM reliably detects MPEG breakups, frozen video, lost audio, A/V offset (lip sync) and most typical causes of impairments found in broadcasts today. The picture below shows each section of the graphical reporting structure.

Figure 5: Graphs for audio metering, video and audio score running continuously
The log files are saved in the ClearView Video Analysis format, which means that they can be played back using:
- The included RTM Player application, or
- Further analyzed using ClearView, which can generate detailed reports.
4 Typical Applications

4.1 Long Duration Testing

What would happen if the video processing units did not produce an error for several hours or days? Perhaps a particular set of input data sent at just the wrong time was needed to create the problem. This type of problem is very difficult to replicate, but it will be the first problem that your customer’s find.

RTM can be used for nearly any extended duration quality monitoring applications. Plug in 2 SDI streams or 1 stream and a file, and RTM will alarm when the quality exceeds the threshold. It will also save the streams before and after the condition for inspection.

Regardless of the input, RTM continually monitors and records the A/V stream when the
- Audio or Video quality drops below a defined threshold,
- Lip-sync exceeds the delay thresholds, or
- Ancillary data (VANC) is missing.

Figure 7: Standard long duration test

4.2 Broadcast Monitoring

Once captured, many problems can be classified
- The video is black
- The audio is silent
- The video and/or audio is distorted
- The video and audio are out of sync with reference to each other
- The ancillary data (closed captioning, subtitles, etc.) is not intact or timed properly

Errors will occur. Simple errors are easily found and corrected, but some happen infrequently and/or in the presence of special conditions.

The recorded stream is stored in the ClearView sequence folder format for further analysis and classification.

In addition, RTM reports
- The average A/V quality,
- A/V delay/offset, and
- Any dropped frames and then dynamically realigns.

4.2.1 Reference Content Caused the Error

At times the reference content can have break-ups in it, and this can cause the processed content to further break-up or completely freeze.
4.2.2 Processing Content Caused the Error

By putting traffic on the network or by over-compressing the reference, the received (set-top box output) may have breakups.

The only way to find these is to monitor every channel at the end-points and then diagnose problems backwards in time until you find the problem.

Figure 8: Network using multiple RTMs
5 Setting RTM Parameters

Upon startup, RTM will launch with the configuration from the last time that it was operating. The parameters on this page, can be changed while, the system is running.

5.1 RTM Status

Figure 9: RTM Status Pane

Status Messages

This is the current status of each type of error. If the status is red, then an error has occurred. The number of errors is noted.

NOTE: details are in the RTM log files.

Clear

This resets the status to 0 errors and turns everything green.

5.2 RTM Controls

Figure 10: RTM Controls

<table>
<thead>
<tr>
<th>Control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preview</td>
<td>Pressing this button acquires the audio and video and shows the 2 images in the preview pane. It does not start the operation of checking quality.</td>
</tr>
<tr>
<td>Start</td>
<td>Pressing this button performs the operations of preview and starts the operation of checking quality.</td>
</tr>
<tr>
<td>Stop</td>
<td>Pressing this button stops the operations of RTM.</td>
</tr>
<tr>
<td>Profiles</td>
<td>Pressing this button allows you to load a configuration profile that you have previously saved. This includes network configurations for IP.</td>
</tr>
<tr>
<td>Config</td>
<td>Pressing this button brings up the configuration menu</td>
</tr>
<tr>
<td>Exit</td>
<td>Pressing this button exits RTM (closes the application).</td>
</tr>
</tbody>
</table>
5.3 RTM Alignment

Figure 11: RTM Alignment

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-Align All</td>
<td>This button does a full alignment of the video and audio.</td>
</tr>
<tr>
<td>Align Video</td>
<td>This button aligns the videos but does not align the audios.</td>
</tr>
<tr>
<td>Align Audio</td>
<td>This button aligns the audios assuming that the current video alignment is correct.</td>
</tr>
<tr>
<td>Video Offset</td>
<td>This is the calculated video offset in frames after the alignment has completed.</td>
</tr>
<tr>
<td>Audio Offset</td>
<td>This is the calculated audio offset in samples relative to the 2 video streams being aligned.</td>
</tr>
<tr>
<td>Spatial X, Y</td>
<td>This is the calculated spatial offset because the 2 videos may have a pixel shift up/down. If the offset is know, you can type in the numbers here and turn off the automatic calculation to speed up the alignment process.</td>
</tr>
</tbody>
</table>

5.4 RTM Video Quality

Figure 12: RTM Video Quality

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>These are status message which display the current frame that is being analyzed (relative to 0/start), the video quality score for Y, Cb, and Cr, and the VANC score based on which lines are being evaluated.</td>
</tr>
<tr>
<td>Threshold</td>
<td>The video quality is deemed to be poor if the falls below the threshold stated here. The threshold can be different for Y, Cb, and Cr.</td>
</tr>
<tr>
<td>Duration</td>
<td>This value defines how many consecutive video quality failures are needed to trigger a recording.</td>
</tr>
</tbody>
</table>
5.5 RTM Audio Quality

Figure 13: RTM Audio Quality

<table>
<thead>
<tr>
<th>Audio Quality</th>
<th>Threshold</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 91.75</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>A2 92.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are status message which display the current audio quality score for each active audio channel.

Threshold
The video quality is deemed to be poor if the falls below the threshold stated here.

Duration
This value defines how many consecutive audio quality failures are needed to trigger a recording.

NOTE: there are more parameters under the Configure Sequence Creation Pane.

NOTE2: Dynamic re-alignment may notice that the video is not aligned and reset the error counter after making a correction.
Setting Normal Configuration Parameters

Pressing Config from the main RTM page, lets you setup the general configurable parameters. Each of these will be discussed in this section.

6.1 Inputs Pane

Figure 14: Video Input Pane

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Source</td>
<td>SDI/HDMI/Analog Input is the hardware input. IP/Compressed is a stream/compressed file input. ClearView Sequence is a file input which has already been brought into a ClearView library. Note: You must use ClearView to convert the compressed or uncompressed file into the appropriate format or you can record the input.</td>
</tr>
<tr>
<td>Enable Scaling</td>
<td>Select to enable scale source or test side inputs to desired X/Y res.</td>
</tr>
<tr>
<td>Scaled Width/Height</td>
<td>Input correct Width/Height of the desired test resolution to match either input 1 or input 2.</td>
</tr>
<tr>
<td>Output Width/Height</td>
<td>Output width/height is determining how the video is formatted to play back via ClearView or RTM Player applications. Must be equal to existing output format drop down values if it is to be played back on RTM or ClearView physical (HDSDI or HDMI) outputs.</td>
</tr>
<tr>
<td>Enable Frame Rate Reduction</td>
<td>This setting allows control parameter to be set for type of frame rate reduction per drop down menu.</td>
</tr>
</tbody>
</table>
Video Input
Select from SDI, ClearView Sequence, IP/Compressed or Watch Folder input. Note: ClearView Sequence is an already imported file as an input to RTM, therefore you must use ClearView or ClearView File Importer to convert the compressed or uncompressed file into the appropriate format before you can select and use a file as the input.

Dual Link
Select this option if the SDI feed is dual link, or level B.

Dolby Audio
Select to enable Dolby audio decode. Please note that you need a Dolby decode license to enable this setting.

6.2 IP/Compressed Configuration Pane

Figure 16: IP/Compressed File Configuration Pane

6.2.1 IP Stream Settings

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Rtsp, rtp, udp or http protocols are supported, select one that is matching the incoming stream protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Input the correct and active IP address of the incoming target stream to test</td>
</tr>
<tr>
<td>Port</td>
<td>IP port number, usually four digits</td>
</tr>
<tr>
<td>Stream Name</td>
<td>Name the stream if desired</td>
</tr>
<tr>
<td>Transport Type</td>
<td>Select from drop down menu only</td>
</tr>
<tr>
<td>Timeout</td>
<td>Time to wait before the system will time out if stream not detected</td>
</tr>
<tr>
<td>Net Interface</td>
<td>Auto detect or static input number as may be required by the network</td>
</tr>
<tr>
<td>Announcements</td>
<td>Session announcements on IP network detected</td>
</tr>
</tbody>
</table>

6.2.2 File Settings

<table>
<thead>
<tr>
<th>File Path</th>
<th>Locate file on your network or a location on the local file system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat File</td>
<td>This setting is if you want to run a loop test so that the file repeats</td>
</tr>
</tbody>
</table>
itself as a test run for longer than the actual file length

Frame Sync Synchronizes the playout of files to live video

6.2.3 Output and Stream Settings

<table>
<thead>
<tr>
<th>Output Module</th>
<th>If greyed out you must stop RTM and also stop any preview in this window for this to become active. Module selected is for one of two:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- No Video Output Module: In this case the tested format is a non-broadcast format that may not need errors to be played back via HDSDI (or HDMI) outputs.</td>
</tr>
<tr>
<td></td>
<td>- Broadcast Output Module: Select this option if the input format is one that is a broadcast format compatible with HDSDI as in the Video Format drop down.</td>
</tr>
</tbody>
</table>

| **Video Format** | Select one of the formats from the drop down menu. If the video format is non-broadcast and not one in this dropdown menu. Open ClearView or RTM Player (model dependent as to which you use) and then select No Video Output Module. |

| **Image Format** | Predefined list if Broadcast Output module is selected. Must match input format or if not truncation may occur. If No Video Output Module is selected then a predefined list will populate based on defined parameters in ClearView or RTM Player before starting RTM. |

| **Canvas Location** | Test format location selection via drop down to be placed within Broadcast Video Output format selected. |

| **Custom Shift** | X defined number of pixels to shift image in canvas location to the right from selected canvas location. Y entered number of pixels will shift images in canvas location to the downward direction from selected canvas location. |

| **Use Transformation** | Checked box activates scaling function, unchecked is deactivated. |

| **Scale Source To** | Input size to scale input video resolution to new size. |

| **De-Interlace** | Takes progressive formats to interlaced format at scale resolution and frame rate selected. |

| **Rate Change** | Rate at which video will be recorded when faults occur and are recorded. |

| **CS Coefficient** | Selection in drop down for standard definition or high definition standards if color space conversion is required. |

| **Truncate to Legal Broadcast Values** | Truncates luma and chroma to 15 to 240 for 8 bit video. |

<table>
<thead>
<tr>
<th>Source Crop</th>
<th>L = Number of pixel to crop from left side of picture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R = Number of pixels to crop from right side of picture</td>
</tr>
<tr>
<td></td>
<td>T = Number of pixels to crop from top side of picture</td>
</tr>
<tr>
<td></td>
<td>B = Number of pixels to crop from bottom side of picture</td>
</tr>
</tbody>
</table>

| **Fast Mode** | Automatically selects the current network filter. |

| **Program** | Selects the PID within the mux. |

| **V. Decoder** | Applied video decoder, drop down selection (may be stream dependent at times which one of these provides best results). |

| **A. Decoder** | Applied audio decoder should be selected depending on audio codec in stream. |
6.3 Alignment Pane

Figure 17: Alignment

<table>
<thead>
<tr>
<th>Video Alignment</th>
<th>Checking this box will enable a full alignment when the Start button (from the main RTM window), on startup, or when RTM realizes that it cannot dynamically realign.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Full Alignment</td>
<td>This flag enables a spatial test between the two incoming signals. Since compression algorithms often eliminate the border pixels knowing that the TV will over-scan (e.g. MPEG generates a 704x480 image to fill a 720x486 video display), the decoding device needs to orient the picture. Thus, a horizontal or vertical shift will take place. RTM needs to detect and compensate for this shift before the monitoring begins. NOTE: if you know the spatial offsets, you can uncheck this box and simply type in the values on the main RTM page’s alignment pane.</td>
</tr>
<tr>
<td>Max X, Max Y</td>
<td>This is the maximum horizontal and vertical search range for spatial alignment. The values are X – 0..8 and Y – 0..8.</td>
</tr>
<tr>
<td>Maximize Alignment Range</td>
<td>When RTM starts it must first determine the temporal and possible spatial offsets between two signals. This is done by capturing a number of frames from both inputs and then finding a best match between the two and determining the temporal and spatial offsets. In situations where delay is greater than 100 frames, this box should be checked. NOTE: requires Input 1 to be ahead of Input 2</td>
</tr>
</tbody>
</table>
Align Disk Files | This flag enables RTM to use the hard disk during full alignment to store the sequences; instead of RAM. The advantage is that the number of frames can be larger. The only downside is that it requires some hard disk space.

Max Alignment Capture Frames | For the initial full alignment, RTM will record from both inputs for as many frames as are defined in this field. During this time interval, both inputs must have at least 2 temporally significant events. **NOTE:** Time is saved by properly setting this value. If you know your delay is < 3 seconds, 12 seconds would most often be sufficient for Max Alignment Frames. A value of 0 uses the maximum available in the 8 GB of onboard RAM.

Full alignment threshold | When using the video quality metric, this minimum value must be met before stating successful alignment. The number is on a 0-100 scale where anything over 15 or 20 is good.

Full alignment upon Video Threshold Failures Within | If RTM sees too many errors over a period of time, it can be caused by no longer being in alignment. This setting tells RTM how many errors are too many in what period of time (seconds) set by the user.

Sequence Frame For Aligning Live Input | When running from a ClearView sequence, this allows you to choose which frame to align from. Dynamic means the RTM to operate the same way it does with every other input and allows it to use a frame selected by the RTM. First Frame means the RTM will use the first frame of the sequence for alignment. User Defined Frame means the RTM will use the frame defined by the value set by the user to find the alignment.

6.3.2 Audio Alignment

Audio Alignment Intervals | Defines how often RTM will check for audio drift. This is also how often the file AudioAlign.log is updated. AudioAlign.log records the value of the audio offset for long-term monitoring. **NOTE:** this is in seconds.

Preferred Audio Alignment Channel | RTM will first try to use this audio channel for audio alignment. The audio channel must be enabled and the audio on this channel must have sufficient audio events required to perform a successful alignment. If the preferred audio alignment channel does not contain enough audio information, then RTM will circulate through all of the enabled audio channels looking for sufficient audio information.

Preferred Lip Sync Display Channel | RTM will use the selected channel as the display on the front facing LCD and when using RTM server commands; it will also return this channel. The None selection means that it will cycle through each channel and display each channel for a small amount of time.

Audio Alignment Search Range Seconds | When measuring the audio quality a number of seconds should be grouped together before processing.

Audio Alignment Threshold | When the audio alignment threshold is set to a non-zero value and all enabled audio channels have an average value greater than or equal to this threshold, then the periodic audio alignment is skipped. At least one enabled audio channel must have an average value less than this threshold for the periodic audio alignment to occur.

6.3.3 Preview

Align Previews | This flag enables Video alignment on the main RTM page.
6.4 Dynamic Realignment Pane

Figure 158: Dynamic Realignment Pane

Enable Dynamic Re-Alignment: Checking this box will enable a dynamic re-alignment if the video quality drops for X number of consecutive video quality failures.

Dynamically Re-Align upon: This defines how many frames (or less) to check the alignment when the video quality drops below the threshold.

Check for maximum alignment: When a dynamic re-alignment happens, this value determines how many frames will be searched in each direction for the best new-match for video offset.

Dynamic threshold: If the video quality scores drop below the running average, but they have not hit the error threshold, it can indicate that a dynamic re-alignment is needed. This setting tells RTM to check the dynamic re-alignment if the video quality score drops below a percentage of average over a period of time (frames).

Recovery within: After dynamic re-alignment, verify that the video quality has improved. The first check is that it is within X percentage of the previous peak score.

NOTE: a failure will trigger a full alignment if allowed.
Verify Percentage

After dynamic re-alignment, verify that the video quality has improved. The second check is that it is within X percentage of the previous average score.

NOTE: a failure will trigger a full alignment if allowed.

Upper Threshold

Dynamically realigns only when video metric scores are below this value.

Max Realignments

If RTM sees too many dynamic re-alignments over a period of time, it can indicate that a full alignment is needed. This setting tells RTM how many re-alignments are too many in what period of time (seconds).

Preserve Audio

If a video frame is dropped while decoding from an IP feed then RTM will drop an audio file to stay properly aligned.

6.5 Video Metric Pane

Figure 19: Video Metric Pane

Selection of two:
1. PSNR – Objective video performance metric. Use when overall performance of video over time is the goal. Can be used to track general quality of video with average log.
2. DMOS – The MS-SSIM metric on the DMOS scale. This metric is set to 0-4. A high score denotes lower video quality. 3.6 – 4.0 is generally considered to be unwatchable. 3.0 – 3.5 is a range that is objectionable to viewers. .4 – 2.99 is a range approximating broadcast/cable/IPTV quality. 0 – .4 is generally production and contribution quality.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Video Components** | Checking these boxes will enable/disable the measurement of the various components.
NOTE: you must check at least 1 box or video quality will not be measured. |
| **Metric Window** | This defines the area of the incoming picture format where the video quality will be measured.
NOTE: several advanced compression algorithms blur the image around the edges assuming that the TVs overscan. |
| **Reset** | Reset returns the Metric Window to the full size of the image |
| **Border clip value** | Instead of setting the PSNR Metric Window size using X, Y, W, and H. You can state that there is an equal border around the edges of X pixels.
NOTE: X, Y, W, and H will be automatically set. |
| **Spatial Offset** | This is carried over from the RTM main alignment pane. You can set it here as well. |
| **Average Period** | Defines how often the file psnrAvg.Log or dmosAvg.Log will be updated. This logfile contains the Min, Max, Average, and Mean values for this many seconds or frames of video. |
| **Graph Minimum Value** | Normally, the graph is shown on a 0 to 100 scale where 100 is perfect quality. You can change this if you know that your normal values are between 0 (minimum) and 40 (maximum) to make the graphs easier to read.
NOTE: the real values will be measured and logged. |
| **Graph Maximum Value** | Normally, the graph is shown on a 0 to 100 scale where 100 is perfect quality. You can change this if you know that your normal values are between 0 (minimum) and 40 (maximum) to make the graphs easier to read.
NOTE: the real values will be measured and logged. |
| **Field Mode** | This flag forces RTM to run in field mode instead of frame mode. It will compensate for field roll.
NOTE: it will not compensate for field flip |
| **Enable Metric Window Overlay** | This setting, when checked, will place a green colored box upon the incoming video thumbnails on the RTM main screen for a visual representation of the Video Metric Window or area of measurement setting. |
| **Stop After Once Through Comparing Sequence to Live Input** | This selection stops the RTM session when comparing input to a file after the file has completed playing once. Unchecked will continue to loop the file and compare to incoming video feed (assuming that incoming video is also the same video in a loop). |
6.6 Audio Metric Pane

Figure 20: Audio Metric Pane

<table>
<thead>
<tr>
<th>Audio Channels</th>
<th>Checking these boxes will enable audio quality measurements on any of the inputs. The algorithm performs quality measurements assuming mono for each channel (i.e. each channel is judged separately).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Analysis</td>
<td>To measure the audio quality this algorithm measures the frequency/amplitude response of the two streams and then correlates their differences. This flag enables this Metric NOTE: this is normally used</td>
</tr>
<tr>
<td>Analysis Window Msec</td>
<td>When measuring the audio quality a number of seconds should be grouped together before processing. This is the number of seconds. NOTE: the number is in video frames and the audio samples are calculated based on the frequency.</td>
</tr>
<tr>
<td>Silence Threshold</td>
<td>If RTM detects silence or very low audio, then it can force a score. Perfect Score: if both streams have silence or very low audio Poorest Score: if one stream has silence and the other does not This is the level for audio to be detected as silence. NOTE: setting this to 0 (zero) turns this analysis off.</td>
</tr>
<tr>
<td>Low Pass Frequency Threshold</td>
<td>When using Frequency/Amplitude to analyze the audio quality, some low frequencies could be ignored. This value tells RTM to ignore frequencies below this number NOTE: setting this to 0 (zero) turns this analysis off.</td>
</tr>
<tr>
<td>Gap Detection</td>
<td>When measuring audio quality RTM will alarm on gaps in audio greater than the Min Gap MSec value.</td>
</tr>
<tr>
<td>Spike Detection</td>
<td>When measuring audio quality RTM will alarm when the audio hits the</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Normalize</td>
<td>This flag enables the detection of normalizing amplitude differences before performing audio PSNR</td>
</tr>
<tr>
<td>Enable Per-Input/Channel Params</td>
<td>When enabled, normalization, silence threshold and low-pass threshold are defined separately for each audio channel. Silence threshold is also defined for each input. When disabled, then normalization, silence threshold and low-pass threshold are global across all audio channels and both inputs.</td>
</tr>
<tr>
<td>Loudness Standard</td>
<td>Dropdown window selectable based on regional standard required for the given test being run.</td>
</tr>
<tr>
<td>Loudness Timescale</td>
<td>Dropdown window selectable based on interval in time the Loudness measurement being performed requires.</td>
</tr>
<tr>
<td>Note for Uneven silence, Spike and Gap Detection</td>
<td>Before the aFreq score is calculated these are flagged Uneven Silence – 2 Maximum loudness value (Spike) – 3 Gap in audio based on min gap MSec value - 10</td>
</tr>
</tbody>
</table>

6.7 VANC Metric Pane

Figure 161: VANC Pane

- **Enable VANC**
 - This flag enables VANC processing
- **VANC**
 - Checking these boxes will enable VANC quality measurements on any of the inputs. The algorithm performs quality measurements on each line separately and will report which lines exceed the threshold.
6.8 Sequence Creation Pane

Figure 22: Sequence Creation Pane

| Sequence Creation | Record Library | Record Seq Prefix | Audio Root | Minimum Capture Frames | Maximum Capture Frames | Pre-Failure Frames | Max Allowable Video Threshold Failures During Pre-Failure | Max Allowable Consecutive Video Threshold Failures | Max Allowable Audio Threshold Failures During Pre-Failure | Max Allowable Consecutive Audio Threshold Failures | Allowable Audio Offset Range | Allowable Audio Loudness Range | Auto Delete | Save Screen Shot | Delay Frames | Clear Recordings | Clear Logs | Minimum Capture Frames | Maximum Capture Frames |
|--------------------|----------------|-------------------|------------|------------------------|------------------------|-------------------|--|---|---|--------------------------------|--------------------------|---------------------------|-------------|---------------|-------------|------------------------|-------------------------|
| Record Library 1 | F:\Input1\ | Source | F:\AudioRoot\ | 300 | 900 | 120 | 30 | 3 | 30 | 5 | 0 to 0 | 0 to 0 | Oldest | | 10 | Clear Recordings | Clear Logs | Minimum Capture Frames | Maximum Capture Frames |
| Record Seq Prefix 2 | F:\Input2\ | Return | | | | | | | | | | | | | | | |

- **Record Library**: This is the library where the recorded sequences are stored upon error.

 NOTE: One library must be located on the “G: array” and the other must be on the “H: array”. To create new libraries, use the ClearView Library Manager. RTM does not have the ability to create new libraries.

- **Record Seq Prefix**: This field defines the base name of all recordings. The text that is automatically concatenated is the following: YYYYMMDD_HH_MM_SS.

 NOTE: that the entire sequence name cannot exceed 35 characters.

- **Audio Root**: The Audio streams should be stored in a different directory than the video. This is the audio location. The video root will be appended to this audio root to form the exact name of the audio sequences.

- **Clear Recordings**: This button clears the contents of the currently selected record library. Be aware that it removes all recordings (sequences), even from prior sessions.

- **Clear Logs**: This button clears the log files, but it does not clear the recordings.

- **Minimum Capture Frames**: Note: This value has been disabled in newer versions of RTM, replaced by pre/post-failure frames.

 This defines the number of frames that will be buffered. If any error is triggered, then these frames will be recorded for further analysis.

- **Maximum Capture Frames**: Since errors may occur near the end of the buffered number of frames, RTM compensates by looking beyond the minimum captured
frames and may write a bigger file up to this limit.

<table>
<thead>
<tr>
<th>Pre-Failure Frames</th>
<th>Number of frames setting. Set the number according to frames required to be recorded before any video or audio threshold failure and error condition recording.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Failure Frames</td>
<td>Number of frames setting. Set the number according to frames required to be recorded after any video or audio threshold failure condition or score becomes within threshold set.</td>
</tr>
<tr>
<td>Max allowable video threshold failures</td>
<td>This value defines how many video quality failures are needed to trigger a recording within the Minimum Capture Frames.</td>
</tr>
<tr>
<td>Max allowable consecutive video failures</td>
<td>This value defines how many consecutive video quality failures are needed to trigger a recording within the Minimum Capture Frames. NOTE: if dynamic re-alignment is checked and an alignment problem is detected, then errors will be reset. NOTE 2: consecutive failures should be set lower than allowable failures.</td>
</tr>
<tr>
<td>Max allowable audio threshold failures</td>
<td>This value defines how many video quality failures are needed to trigger a recording within the Minimum Capture Frames.</td>
</tr>
<tr>
<td>Max allowable consecutive audio failures</td>
<td>This value defines how many consecutive video quality failures are needed to trigger a recording within the Minimum Capture Frames. NOTE: consecutive failures should be set lower than allowable failures.</td>
</tr>
<tr>
<td>Allowable Audio Offset Range</td>
<td>This should probably be set to the SMPTE specification based on which points are measured. It is a variable because SMPTE defines the range based on the measuring points.</td>
</tr>
<tr>
<td>Allowable Audio Loudness Range</td>
<td>This is the range that is acceptable. RTM will alarm if the loudness falls outside of this range.</td>
</tr>
<tr>
<td>Auto Delete</td>
<td>If the disk fills to near maximum, sequences will need to be deleted. This flag enables deleting the oldest files or the newest files.</td>
</tr>
<tr>
<td>Save Screen Shot</td>
<td>When an error occurs, the video frame that triggered the error (even if it is a VANC or Audio quality error) can be saved as a single image.</td>
</tr>
<tr>
<td>Delay Frames</td>
<td>This saves to save the screen shot X frames after the triggered event.</td>
</tr>
<tr>
<td>Clear Logs and Recordings</td>
<td>RTM will delete all of the current logs, and recordings when starting the application.</td>
</tr>
</tbody>
</table>
6.9 Logs and Alerts Pane

Figure 23: Logs and Alerts Pane

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Files</td>
<td>All events are logged. These events include startup conditions, alignment parameters, realignment, etc. The log file is stored at the location specified here.</td>
</tr>
<tr>
<td>Use Subfolders</td>
<td>The log file can become very long as we append information about start/stops from all operations into the same log file. Instead of this, you may want a log file every time you start and stop and the log file will be put into a subfolder with the time/date appended to it. This flag enables writing multiple log files per stop/start; as opposed to one big log file.</td>
</tr>
<tr>
<td>Audio Alignment Logging Interval</td>
<td>This defines the interval in seconds between each entry into the audio alignment log. It must be greater than or equal to the audio alignment interval.</td>
</tr>
<tr>
<td>Audio Warning Interval</td>
<td>When an error occurs, a log entry is written, the count is increased on the main RTM page, if you are running the 1RU RTM, the front panel count is increased. In addition to these, an audible alert can sound. This audio alert can happen 1 time or it can happen at a frequency until you clear it. This is the audio warning frequency. NOTE: 0 (zero) is generate an audio warning 1 time.</td>
</tr>
<tr>
<td>Hardware Temperature Threshold</td>
<td>A threshold that if surpassed will alert in the RTMonitor GUI.</td>
</tr>
<tr>
<td>Use GDI Graphing and Previews</td>
<td>Most of the time, RTM uses DirectX. Some machines do not operate properly, with DirectX. If your Video Clarity support engineer tells you to check this box, RTM can run in Graphics Device Interface (GDI) mode, which is the older way. This flag enables this mode.</td>
</tr>
</tbody>
</table>
7 Log Files

RTM creates average log files, and error log files which are located in F:\RTMLog

1 AudioAlign.log
2 AudioAvg.log
3 RTMLog.log
4 PSNRAvg.log / DMOSAvg.log
5 .psnr/.dmos and .audio files

7.1 AudioAlign.log

This is a tab-delimited text file containing the time between audio alignments, the current audio offset relative to the video and whether the audio alignment passed or failed (Fail: N is passed).

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Audio Alignment</th>
<th>Audio Offset: 0 samples</th>
<th>0.0000 frames</th>
<th>0.0000 msec Video Offset: 0</th>
<th>Fail: N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010/10/26 19:05:09</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
<tr>
<td>2010/10/26 19:05:14</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
<tr>
<td>2010/10/26 19:05:19</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
<tr>
<td>2010/10/26 19:05:29</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
<tr>
<td>2010/10/26 19:05:29</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
<tr>
<td>2010/10/26 19:05:39</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
<tr>
<td>2010/10/26 19:05:44</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
<tr>
<td>2010/10/26 19:05:49</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
<tr>
<td>2010/10/26 19:05:59</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
<tr>
<td>2010/10/26 19:05:59</td>
<td>Audio Alignment</td>
<td>Audio Offset: 0 samples</td>
<td>0.0000 frames</td>
<td>0.0000 msec Video Offset: 0</td>
<td>Fail: N</td>
</tr>
</tbody>
</table>

7.2 AudioAvg.log

This is a tab-delimited text file containing the average audio scores for all 8 channels of audio.
7.3 RTMLog.log

This is the main status log for RTM. It stores all relevant information required for tracking historical data such as settings, frequency of impairments, detected video delay, loss of signal time, etc.

2010/10/26 19:19:42 Full Alignment Video Offset: 0 Value: 18.3742
2010/10/26 19:19:42 Monitor Started
2010/10/26 19:19:42 Version: 1.0.3633.0 Build Date: 10/25/2010
2010/10/26 19:19:42 Video Input 1: SDI In 1
2010/10/26 19:19:42 Analog Video Format 1: 525 Component Beta US
2010/10/26 19:19:42 Audio Input 1: SDI Embedded
2010/10/26 19:19:42 Library 1: G:\Src
2010/10/26 19:19:42 Library 2: H:\Imp
2010/10/26 19:19:42 Sequence 1: Input1_20101026_19_19_33
2010/10/26 19:19:42 Sequence 2: Input2_20101026_19_19_33
2010/10/26 19:19:42 Frames To Record: 450
2010/10/26 19:19:42 Max Frames To Record: 600
2010/10/26 19:19:42 Log File: E:\RTMLog\RTMlog.log
2010/10/26 19:19:42 Enable Log File Overwrite: 1
2010/10/26 19:19:42 Psnr Components
2010/10/26 19:19:42 Y: 1 Cb: 1 Cr: 1
2010/10/26 19:19:42 Psnr Window
2010/10/26 19:19:42 X: 8 Y: 8 W: 1264 H: 704
2010/10/26 19:19:42 Spatial Offset
2010/10/26 19:19:42 X: 0 Y: 0
2010/10/26 19:19:42 Temporal Components
2010/10/26 19:19:42 Y: 1 Cb: 0 Cr: 0
2010/10/26 19:19:42 Temporal Window
2010/10/26 19:19:42 X: 8 Y: 8 W: 1264 H: 704

7.4 psnrAvg.log/dmosAvd.log

This is a tab-delimited text file containing the time of the average video quality. Each component is shown (Y, Cb, and Cr) along with the Average, Minimum, Maximum, and Standard Deviation of each component. Need new screen shot
7.5 psnr/.dmos and .audio files.

Whenever a threshold is reached and a recording is started, either a .psnr/.dmos or .audio file is also created in the RTMLog folder. These files contain the measured quality values for the associated recording. These files can also be dragged/dropped onto ClearView for easy synchronized playback and post analysis.

ClearView PSNR Log File (V7.0) 10/15/10 15:53:41
Created by Video Clarity Realtime Monitor 1.0 10/08/2010

Video Output Device: Broadcast Output Module
Video Output Format: 720p 60.00 Hz.
Analog Output Format: 720p 60.00 Hz.
Image Format: YCbCr 8 bpc
Enable VANC: 0
Threshold Y: -1.00
Threshold Cb: -1.00
Threshold Cr: -1.00
Spatial X: 0
Spatial Y: 0
Normalize Y: 0
Normalize Cb: 0
Normalize Cr: 0
Metric Window X: 0
Metric Window Y: 0
Metric Window W: 1280
Metric Window H: 720
Psnr Limit Numerator: 1

Library A: H://Imp
Sequence A: Input1_20101015_15_53_36
First Frame A: 0
Last Frame A: 299
Speed A: 1.00

Library B: G://Src
Sequence B: Input2_20101015_15_53_36
First Frame B: 0
Last Frame B: 299
Speed B: 1.00

Sequence Metric Y Min: 13.88
Sequence Metric Y Max: 100.00
Sequence Metric Y Avg: 99.71
Sequence Metric Cb Min: 26.20
Sequence Metric Cb Max: 100.00
Sequence Metric Cb Avg: 99.75
Sequence Metric Cr Min: 20.13
Sequence Metric Cr Max: 100.00
Sequence Metric Cr Avg: 99.73

Frame Y/G Cb/B Cr/R Y/G Cb/B Cr/R Fail Y FailCb FailCr
000000 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000001 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000002 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000003 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000004 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000005 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000006 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000007 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000008 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000009 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000010 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000011 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000012 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
000013 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00 100.00 000000 000000 000000
8 RTM Log Grapher

RTM Log Grapher makes it easy to visualize test log data in a graph form. Graphs can be produced from saved logs on any computer running Windows or can be used on the system running the test. The Log Grapher produces CSV files in sets of comparative graphs by metric type that can be manipulated to zoom into potentially large data sets.

8.1 The Application

Upon opening the RTM log graphing application a log file will open followed by a graphing window. Metrics you can graph individually or simultaneously are as follows:

- PSNR Y, CR, CB
- DMOS Y
- Audio Channels
- LKFS
- Audio alignment
- Video Offset for both dynamic realignment and full alignment

8.2 Interaction with the GUI

<table>
<thead>
<tr>
<th>Panning</th>
<th>Dragging the left button will allow you to pan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling</td>
<td>Dragging the right button allows you to scale. Left/Right scales horizontally. Up/Down scales vertically</td>
</tr>
<tr>
<td>Zooming</td>
<td>Mouse wheel spin zooms the scene in and out</td>
</tr>
<tr>
<td>Reset</td>
<td>Clicking on the “A Box” in the bottom left corner of the scene will undo all panning/scaling/zooming</td>
</tr>
<tr>
<td>View All</td>
<td>Right click selection that adjusts the display so that multiple graphs are visible at the same time, even if their Y axis ranges do not overlap</td>
</tr>
<tr>
<td>Export</td>
<td>Right click selection that allows user to export the current scene in the graphing tool</td>
</tr>
</tbody>
</table>
9 Command-Line Interface

The monitoring process can also be programmatically controlled via scripting by using RTMServer.exe and rtm.exe

9.1 RTMServer.exe

Once started, RTMServer.exe will receive commands from rtm.exe (the client) and allow scriptable control of the RTM system. This allows the ability for multiple units to be controlled from a single controller application. Commands can also be sent from other machines which have access to the RTM system via a network.

RTM ships with a desktop shortcut to start RTMServer. Double-Click to start and then open a DOS command window to send commands to RTMServer using the client rtm.exe.

9.2 rtm.exe

This is the client executable which acts as the command-line interface. This program must either be in the folder where commands are sent from or it the “path” environment variable.

To view a list of RTM commands, type RTM ?.

To get a syntax description of the RTM commands, type RTM ? <command name>

To execute any command, type RTM <command name>.

The following is a list of RTM commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RestoreConfig</td>
<td>Restore a saved configuration</td>
</tr>
<tr>
<td>SaveConfig</td>
<td>Save the current configuration</td>
</tr>
<tr>
<td>Preview</td>
<td>Preview the streams, but do not start</td>
</tr>
<tr>
<td>Stop</td>
<td>Stop Operations</td>
</tr>
<tr>
<td>Start</td>
<td>Start RTM</td>
</tr>
<tr>
<td>Realign</td>
<td>Manually re-align</td>
</tr>
<tr>
<td>AlignVideo</td>
<td>Manually align just the video</td>
</tr>
<tr>
<td>AlignAudio</td>
<td>Manually align just the audio</td>
</tr>
<tr>
<td>Status</td>
<td>Reports the status of each impairment class</td>
</tr>
<tr>
<td>BoardTemp</td>
<td>Reports the internal temperature of RTM</td>
</tr>
<tr>
<td>ShellCmd</td>
<td>Issues a Windows command</td>
</tr>
<tr>
<td>Version</td>
<td>Reports the RTM version</td>
</tr>
<tr>
<td>StartTime</td>
<td>Reports when RTM started</td>
</tr>
<tr>
<td>RunTime</td>
<td>Reports how long RTM has been running</td>
</tr>
<tr>
<td>Exit</td>
<td>Exits RTM</td>
</tr>
<tr>
<td>AudioChannelsEnabled</td>
<td>Reports which audio channels are enabled</td>
</tr>
<tr>
<td>AudioChannelEnabled</td>
<td>Reports the status of each audio component</td>
</tr>
<tr>
<td>VideoComponentEnabled</td>
<td>Reports the status of each video component (Y, Cb, and Cr)</td>
</tr>
<tr>
<td>VANCLineEnabled</td>
<td>Reports the status of each VANC line</td>
</tr>
<tr>
<td>AudioThreshold</td>
<td>Sets or Displays the current Audio threshold per channel</td>
</tr>
<tr>
<td>AudioDuration</td>
<td>Sets or Displays the current Audio duration for error per channel</td>
</tr>
<tr>
<td>VideoThreshold</td>
<td>Sets or Displays the current Video threshold per component</td>
</tr>
<tr>
<td>VideoDuration</td>
<td>Sets or Displays the current Video duration for error per component</td>
</tr>
<tr>
<td>VANCThreshold</td>
<td>Sets the VANC on/off</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>VANCDuration</td>
<td>Sets the VANC on/off</td>
</tr>
<tr>
<td>SpatialX</td>
<td>Sets or Displays the SpatialX offset</td>
</tr>
<tr>
<td>SpatialY</td>
<td>Sets or Displays the SpatialY offset</td>
</tr>
<tr>
<td>VideoImpairments</td>
<td>Reports the number of video impairments and the data/time of the last one</td>
</tr>
<tr>
<td>AudioImpairments</td>
<td>Reports the number of audio impairments and the data/time of the last one</td>
</tr>
<tr>
<td>LipSyncErrors</td>
<td>Reports the number of lip sync errors and the data/time of the last one</td>
</tr>
<tr>
<td>VANCErrors</td>
<td>Reports the number of VANC errors and the data/time of the last one</td>
</tr>
<tr>
<td>InvalidSignals</td>
<td>Reports the number of times that the input became invalid and the data/time of the last one</td>
</tr>
<tr>
<td>ClearImpairments</td>
<td>Resets the impairment count to 0</td>
</tr>
<tr>
<td>ClearRecordings</td>
<td>Clears all of the audio and video streams saved</td>
</tr>
<tr>
<td>ClearLogs</td>
<td>Clears all 5 of the log files generated</td>
</tr>
<tr>
<td>AlignmentStatus</td>
<td>Reports the audio and video offsets</td>
</tr>
<tr>
<td>VideoMin</td>
<td>Reports the current video quality minimum score</td>
</tr>
<tr>
<td>VideoMax</td>
<td>Reports the current video quality maximum score</td>
</tr>
<tr>
<td>VideoAvg</td>
<td>Reports the current video quality average score</td>
</tr>
<tr>
<td>VideoStdDev</td>
<td>Reports the current video quality score’s standard deviation</td>
</tr>
<tr>
<td>AudioMin</td>
<td>Reports the current audio quality minimum score</td>
</tr>
<tr>
<td>AudioMax</td>
<td>Reports the current audio quality maximum score</td>
</tr>
<tr>
<td>AudioAvg</td>
<td>Reports the current audio quality average score</td>
</tr>
<tr>
<td>AudioStdDev</td>
<td>Reports the current audio quality score’s standard deviation</td>
</tr>
<tr>
<td>VANCMin</td>
<td>Reports the current VANC quality minimum score</td>
</tr>
<tr>
<td>VANCMax</td>
<td>Reports the current VANC quality maximum score</td>
</tr>
<tr>
<td>VANCAvg</td>
<td>Reports the current VANC quality average score</td>
</tr>
<tr>
<td>VANCStdDev</td>
<td>Reports the current VANC quality score’s standard deviation</td>
</tr>
</tbody>
</table>

9.3 Commands Detailed

Preview

Description: Preview will begin in RTMonitor

Syntax: `preview`

Input: NONE

Output:
- Received: Success
- Received: Failure

Example: `rtm preview`

Notes: Running preview is like pressing the Preview button in RTMonitor

RestoreConfig

Description: Restores a saved RTMonitor configuration

Syntax: `restoreConfig <cPath>`

Input: `cPath` Full path to an RTM configuration file

Output:
- Received: Success
- Received: Failure

Example: `rtm restoreConfig “C:\LongTest.reg”`

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

SaveConfig
Description: Saves the full RTMonitor configuration
Syntax: `saveConfig <cPath>`
Input: `cPath` Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: `rtm saveConfig “C:\LongTest.reg”`
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

Stop
Description: Stops RTMonitor
Syntax: `stop`
Input: `cPath` Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: `rtm saveConfig “C:\LongTest.reg”`
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

NewFolder
Description: Stops RTMonitor
Syntax: `stop`
Input: `cPath` Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: `rtm saveConfig “C:\LongTest.reg”`
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

VideoMetric
Description: Stops RTMonitor
Syntax: `stop`
Input: `cPath` Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: `rtm saveConfig “C:\LongTest.reg”`
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

VideoLogAveraging(AudioLogAveraging)
Description: Stops RTMonitor
Syntax: `stop`
Input: `cPath` Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: `rtm saveConfig “C:\LongTest.reg”`
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes
MetricWindow

Description: Stops RTMonitor

Syntax: stop

Input: cPath
Full path to save an RTM configuration file

Output:
- Received: Success
- Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"`

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

BorderValue

Description: Stops RTMonitor

Syntax: stop

Input: cPath
Full path to save an RTM configuration file

Output:
- Received: Success
- Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"`

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

AudioMetric

Description: Stops RTMonitor

Syntax: stop

Input: cPath
Full path to save an RTM configuration file

Output:
- Received: Success
- Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"`

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ConfigLipSync

Description: Stops RTMonitor

Syntax: stop

Input: cPath
Full path to save an RTM configuration file

Output:
- Received: Success
- Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"`

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ConfigLKFS

Description: Stops RTMonitor

Syntax: stop

Input: cPath
Full path to save an RTM configuration file

Output:
- Received: Success
- Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"`

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ConfigSpatialRange

Description: Stops RTMonitor

Syntax: stop
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Syntax</th>
<th>Input:</th>
<th>Full path to save an RTM configuration file</th>
<th>Output: Received:</th>
<th>Example:</th>
<th>Notes:</th>
</tr>
</thead>
</table>
| **ConfigFullAlignment** | Stops RTMonitor | stop | cPath | Full path to save an RTM configuration file | Success | rtm saveConfig "C:\LongTest.reg" | Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
| | | | | | Failure | | If the path has spaces in it then the path needs to be enclosed by double quotes |
| **ConfigDynamicAlign** | Stops RTMonitor | stop | cPath | Full path to save an RTM configuration file | Success | rtm saveConfig "C:\LongTest.reg" | Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
| | | | | | Failure | | If the path has spaces in it then the path needs to be enclosed by double quotes |
| **GetAlignmentFailCode** | Stops RTMonitor | stop | cPath | Full path to save an RTM configuration file | Success | rtm saveConfig "C:\LongTest.reg" | Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
| | | | | | Failure | | If the path has spaces in it then the path needs to be enclosed by double quotes |
| **SetInput** | Stops RTMonitor | stop | cPath | Full path to save an RTM configuration file | Success | rtm saveConfig "C:\LongTest.reg" | Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
| | | | | | Failure | | If the path has spaces in it then the path needs to be enclosed by double quotes |
| **ConfigScaling** | Stops RTMonitor | stop | cPath | Full path to save an RTM configuration file | Success | rtm saveConfig "C:\LongTest.reg" | Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
| | | | | | Failure | | If the path has spaces in it then the path needs to be enclosed by double quotes |

06/01/2015 Rev. 3.1.1 35 of 37
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ConfigInputIP

- **Description:** Stops RTMonitor
- **Syntax:** `stop`
- **Input:** `cPath` Full path to save an RTM configuration file
- **Output:**
 - Received: Success
 - Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ConfigInputFile

- **Description:** Stops RTMonitor
- **Syntax:** `stop`
- **Input:** `cPath` Full path to save an RTM configuration file
- **Output:**
 - Received: Success
 - Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ConfigStreamScaling

- **Description:** Stops RTMonitor
- **Syntax:** `stop`
- **Input:** `cPath` Full path to save an RTM configuration file
- **Output:**
 - Received: Success
 - Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ApplyStreamChanges

- **Description:** Stops RTMonitor
- **Syntax:** `stop`
- **Input:** `cPath` Full path to save an RTM configuration file
- **Output:**
 - Received: Success
 - Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1 рег not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

SequenceConfig

- **Description:** Stops RTMonitor
- **Syntax:** `stop`
- **Input:** `cPath` Full path to save an RTM configuration file
- **Output:**
 - Received: Success
 - Received: Failure

Example: `rtm saveConfig "C:\LongTest.reg"

Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes
ConfigLogFile

Description: Stops RTMonitor
Syntax: stop
Input: cPath Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: rtm saveConfig "C:\LongTest.reg"
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

GetRTMErrorCode

Description: Stops RTMonitor
Syntax: stop
Input: cPath Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: rtm saveConfig "C:\LongTest.reg"
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ConfigVANC

Description: Stops RTMonitor
Syntax: stop
Input: cPath Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: rtm saveConfig "C:\LongTest.reg"
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ConfigRateConvert

Description: Stops RTMonitor
Syntax: stop
Input: cPath Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: rtm saveConfig "C:\LongTest.reg"
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes

ConfigStreamModule

Description: Stops RTMonitor
Syntax: stop
Input: cPath Full path to save an RTM configuration file
Output: Received: Success
 Received: Failure
Example: rtm saveConfig "C:\LongTest.reg"
Notes: Path must be from root, i.e. C:\ConfigFiles\Scenario1.reg not \Scenario1.reg
If the path has spaces in it then the path needs to be enclosed by double quotes